
28 The Delphi Magazine Issue 40

Under Construction:
Surfin’ Your Surfers
With TDecisionCube
by Bob Swart

Last month we played with the
TClientDataSet component,

used it to connect to MIDAS and
CORBA servers, and presented raw
statistical web visitor data in a
simple data-aware grid. This time,
we’ll take the analysis of the web
visitor tracking data to the next
level with the help of the Decision
Cube Technology from Delphi’s
Client/Server Edition.

Problem Description
A website visitor tracking applica-
tion logs each visit to a web page in
a website. During each visit, not
only the web page URL, but also the
date, time, unique user IP address,
the User Agent (web browser) and
the referrer web page URL is
logged. This information can be
used for several purposes, for
example to get a statistical over-
view of the web browsers and oper-
ating systems used to view my
website, or to determine the busy
hours at my website compared to
quieter hours.

DecisionCube Theory
Delphi 3 Client/Server introduced
the Decision Cube component col-
lection, a set of components for
crosstab analysis and presentation
of data in a grid or chart. Crosstab
means that we summarize data
(such as the number of page
requests or unique visitors on a
daily basis), and present the data
along a number of dimensions
(such as 0..24 hour, web browser
version and operating system).

In order to use the logfiles gener-
ated by last month’s tracking
application, we need to rewrite the
conversion routine (from .TRK file
to .DB table) and use the resulting
table as the input for a Decision
Query to feed the Decision Cube

and other decision support
components.

At the end of this article, we’ll be
able to draw some interesting
conclusions, so let’s get started...

Logfile Reconversion
We start with the tracking logfile
19981027.TRK generated on Tues-
day 27th October (the day I was
present at the Inprise Conference
in London, good for 2,027,334 bytes
or 4,759 page requests, 41%
referred). Converting this logfile to
a table that can be used by a
Decision Cube means we have to
consider the dimensions and sum-
maries to be used by the Decision
Cube. Some of the dimensions that
we want to see are browser type
(condensed), operating system,
hours and maybe domain (derived
from IP addresses). The summa-
ries would include total page
requests and unique visitors (or IP
addresses).

This means a slightly modified
TrkTable program from last time,
with fields for DateTime, Hours, IP,
Browser, OSystem, ThisPage and
Referrer (see Listing 1).

Note that Listing 1 actually con-
tains a number of hardcoded rules
to convert the data from the track-
ing logfile to more
condensed informa-
tion (like Browser and
OSystem) for the
table.

DecisionCube
Practice
With this new table,
we can create a query
and use the Hours,
Browser and OSystem
fields as dimensions,
and the ‘count’ of
ThisPage (the page

requests) or unique IP numbers
(unique visitors) as summary
information.

To create a Decision Cube pro-
ject for the Website Visitor
Tracking Data Analysis applica-
tion, we can either use an
ActiveForm and deploy it on the
internet/intranet again, or a simple
‘regular’ new application. In this
article, I have used the latter
approach, but an ActiveForm
demo version (with fixed data for
27th October) will be present on
my website at www.drbob42.com/
ActiveX/decision.htm by the time
you read this.

For now, we’ll start a regular new
application, drop a TDecisionPivot
component on it (set Align to
alTop), and drop a TDecisionQuery,
TDecisionCube and TDecisionSource
right below the DecisionPivot1.

Assign the DataSet property of
DecisionCube1 to the Decision
Query1 component (but in general
we can use any dataset here). Next,
assign the DecisionCube property
of DecisionSource1 to Decision
Cube1 (just like a datasource to a
dataset), and assign the
DecisionSource property of Deci-
sionPivot1 to DecisionSource1
(again, similar to data-aware
components connecting to a
datasource).

Of the components on the form
right now (see Figure 1), only the
DecisionPivot is visual, the others
are non-visual decision ‘engine’
components. The DecisionPivot
will show buttons for each of the
dimensions we’re using in the
DecisionGrid, and a drop-down

➤ Figure 1

December 1998 The Delphi Magazine 29

program TrkTable;
{$APPTYPE CONSOLE}
uses SysUtils, DB, DBTables;
var
f: Text;
i: Integer;
Str,Agent: String;
hits: Integer = 0;
refer: Integer = 0;

function CopyStripDelete(var Str: String; From,Len:
Integer): String;

begin
Result := Copy(Str,From,Len); { copy }
Delete(Str,1,Len); { delete }
Len := Length(Result);
while Result[Len] = #32 do
Dec(Len);

SetLength(Result,Len) { strip }
end {CopyStripDelete};
begin
if ParamCount = 0 then begin
writeln('Usage: TrkTable [datfile]');
Halt

end;
with TTable.Create(nil) do
try
Active := False;
TableType := ttParadox;
TableName := ParamStr(1)+'.DB';
with FieldDefs do begin
Clear;
Add('DateTime', ftString, 24, FALSE);
Add('Hours', ftInteger, 0, FALSE);
Add('IP', ftString, 16, FALSE);
Add('Browser', ftString, 32, FALSE);
Add('OSystem', ftString, 32, FALSE);
Add('ThisPage', ftString, 128, FALSE);
Add('Referrer', ftString, 128, FALSE);

end;
CreateTable;
Open;
System.Assign(f,ParamStr(1)+'.trk');
System.Reset(f);
while not System.Eof(f) do begin
readln(f,Str);
Append;
Agent := CopyStripDelete(Str,1,24);
FieldByName('DateTime').AsString := Agent;
System.Delete(Agent,1,11);
if Pos('AM',Agent) > 0 then begin
System.Delete(Agent,Pos(':',Agent),255);
if Agent = '12' then
FieldByName('Hours').AsInteger := 0

else
FieldByName('Hours').AsInteger := StrToInt(Agent)

end else begin
{ PM }
System.Delete(Agent,Pos(':',Agent),255);
FieldByName('Hours').AsInteger :=
StrToInt(Agent) + 12

end;
FieldByName('IP').AsString :=
CopyStripDelete(Str,1,16);

Agent := CopyStripDelete(Str,1,128);
if (Pos('Windows NT', Agent) > 0) or
(Pos('WinNT', Agent) > 0) then
FieldByName('OSystem').AsString := 'WinNT'

else if (Pos('Windows 95', Agent) > 0) or

(Pos('Win95', Agent) > 0) then
FieldByName('OSystem').AsString := 'Win95'

else if (Pos('Windows 98', Agent) > 0) or
(Pos('Win98', Agent) > 0) then
FieldByName('OSystem').AsString := 'Win98'

else If Pos('Win16', Agent) > 0 then
FieldByName('OSystem').AsString := 'Win16'

else if Pos('Linux', Agent) > 0 then
FieldByName('OSystem').AsString := 'Linux'

else if Pos('Teleport', Agent) > 0 then
FieldByName('OSystem').AsString := 'Teleport'

else
FieldByName('OSystem').AsString := 'other';

if Pos('(compatible; ',Agent) > 0 then begin
System.Delete(Agent,1,pos('(compatible;',Agent)+12);
if Pos('MSIE',Agent) > 0 then
System.Delete(Agent,1,Pos('MSIE',Agent)-1);

if Pos(';',Agent) > 0 then
System.Delete(Agent,Pos(';',Agent),255)

else if Pos(')',Agent) > 0 then
System.Delete(Agent,Pos(')',Agent),255)

end else if Pos('MSIE',Agent) > 0 then
System.Delete(Agent,1,Pos('MSIE',Agent)-1)

else if Pos(' ',Agent) > 0 then
System.Delete(Agent,Pos(' ',Agent),255);

if Pos('Mozilla/',Agent) = 1 then begin
System.Delete(Agent,1,8);
Agent := 'Netscape ' + Agent

end else if (Length(Agent) < 2) or
(Agent[1] = '(') then
Agent := 'other';

i := Pos(' ',Agent);
if i > 0 then begin
repeat
Inc(i)

until not (Agent[i] in ['0'..'9','.']);
System.Delete(Agent,i,255);
{$IFDEF X}
// change all .01 or .02 postfixes to .x
i := Pos('.0',Agent);
if (i > 0) and (Length(Agent) > i+1) then begin
System.Delete(Agent,i+3,255);
Agent[i+2] := 'x' { 4.0x }

end
{$ENDIF}
end;
if (FieldByName('OSystem').AsString = 'other') and
(Pos('MSIE',Agent) > 0) then
FieldByName('OSystem').AsString := 'Win16';

FieldByName('Browser').AsString := Agent;
FieldByName('ThisPage').AsString :=
CopyStripDelete(Str,1,128);

FieldByName('Referrer').AsString :=
CopyStripDelete(Str,1,128);

if FieldByName('Referrer').AsString <> '@' then
Inc(refer); // actual referrer info

Post;
Inc(hits)

end;
writeln(hits,' page requests (', (refer*100) div hits,
'% referred) ', 'in logfile ',ParamStr(1))

finally
System.Close(f);
Close;
Free

end
end.

selection list to pick one of the
summary fields. The area under
the DecisionPivot can be used to
show the actual data from the
DecisionCube in either a
DecisionGrid (a sophisticated
DBGrid) or a DecisionGraph (derived
from TeeChart, so it has many
charting possibilities).

We don’t drop any DecisionGrids
or DecisionGraphs just yet, but first
concentrate on the input dataset to
analyse here.

Decision Query
If we double click on the
DecisionQuery1 component, the
Decision Query Editor is started in
which we can generate the SQL

query to feed the DecisionCube.
Note (from Figure 2) that we start
with seven fields from the
19981027.DB table. Three of these
fields (Hours, OSystem and Browser)
can be used as dimensions, while
ThisPage and IP can be used as
summary information for the
individual cells. When adding
summary fields, Delphi offers an
aggregate function (SUM, COUNT, etc)
and we need the COUNT function to
emunerate the number of page
requests and visitors (IP
addresses).

The Decision Query Editor (see
Figure 2) offers a quick and easy
way to turn fields into dimensions
or summaries. However, we can

always decide to use the SQL
Builder Wizard to prebuild our
SQL query. Additionally, we can
switch to the SQL Query tab of the
Decision Query Editor and see the
source of the generated SQL Query
itself. In this page, we can even
modify the content of the SQL
Query, for example to change
COUNT(IP) into COUNT(DISTINCT IP)
to make sure we only count unique
visitors (that is, unique IP
addresses). This option was not
offered by the arrow-buttons in the
first page, so we actually had to
make this change in the SQL Query
here (see Figure 3).

➤ Listing 1: TrkTable.

30 The Delphi Magazine Issue 40

We see that dimensions are
implemented by the SQL GROUP
statement, while the summaries
are all other (aggregated) fields,
holding the value of COUNT(
ThisPage) and COUNT(DISTINCT IP).
If we decide to use a regular TQuery
component instead of a
TDecisionQuery component, then
we need to ensure that we also
include a GROUP BY clause in the SQL
Query, and that the fields in this
GROUP BY match the order of the
fields in the SELECT statement (for
non-aggregated fields).

After we click on the Edit Done
button, the SQL Query is parsed
and checked against the SQL
ANSI-92 standard.

Decision Cube
Now that we have defined the
DecisionQuery, it’s time to see the
effect in the Decision Cube, the
central processing component
that is fed by the DecisionQuery’s
data.

If we double click on the Deci-
sion Cube component, we enter
the Decision Cube Editor where we
can customise the Dimension and
Summary fields. For example, the
OSystem field gets a display name of
OS, while the COUNT OF ThisPage field
is named Webpage Requests and
COUNT OF IP is named Unique
Visitors. Note that here, again,
DISTINCT is not mentioned.

The second tab of the Decision
Cube Editor contains Memory Con-
trol options. These are important,

and we must realise that the
Decision Cube is maintaining the
information in memory. So, each
dimension potentially results in a
combinatoric explosion, and the
three dimensions we use (Hour, OS
and Browser) already result in
about 9,000 records. Note that this
is about twice as much as the
number of lines in the original
logfile, and things could have been
worse (in other words bigger) if we
used the real time, included
domain information or more
detailed information about the OS
and Browser types.

Decision Grid
Now it’s time to add another visual
part to our form. Just drop a
TDecisionGrid under the
DecisionPivot1, set Align to Client,
and connect the DecisionSource
property to the DecisionSource1
component. If we set the Active
property of the DecisionQuery1
component to True, we can see the
live analysis in the Decision Grid at
design-time.

Note that every column of the
Decision Grid has the same width,
while I would prefer to use a
greater width for the first few col-
umns (which have the dimension
values), and a smaller width for the
remaining columns. This unfortu-
nately cannot be done, since the
TDecisionGrid only publishes the
DefaultColWidth property (which
works for all columns) and not the
ColWidths index property (which

➤ Figure 2 ➤ Figure 3

can be used to set the individual
cell widths).

TDecisionGrid is derived from
TCustomDecisionGrid, which is
derived from TCustomGrid where
we can find the ColWidths as pro-
tected property. So, all we need to
do is unprotect this property, or
make it public. The easiest way to
do that is by deriving a new com-
ponent THackDecisionGrid that
only re-defines the ColWidths prop-
erty as a public property:

THackDecisionGrid =
class(TDecisionGrid)

public
property ColWidths;

end;

We can now either install the
THackDecisionGrid and use it
instead of the original TDecision
Grid, or we can just typecast the
TDecisionGrid component to a
THackDecisionGrid, since they both
have the same layout (the only dif-
ference is the fact that ColWidths is
declared public in the
THackDecisionCube). Casting the
DecisionCube1 component to a
THackDecisionCube means we can
now assign 56 to the ColWidhts[0]
(the operating system) and 110 to
ColWidths[1] (the browser type).
See Listing 2 for details.

Decision Action!
We are now ready to compile and
run the Website Visitor Tracking
Data Analysis application.

December 1998 The Delphi Magazine 31

The first thing we can analyse is
the distribution of operating sys-
tems among the unique visitors for
each hour on that particular 27th
October. It turns out that Win95 is
still the most used OS by my visi-
tors (almost 50%), followed by
WinNT. Win98 is a good third, and
we can effectively ignore the
others (less than 3% combined). It
is strange to see Linux in the list,
although we must remember that a
web browser machine is not neces-
sarily the development machine.
The Teleport entry is in fact a
WebRobot ‘crawling’ (down-
loading) my entire site, which
happened twice that day (and a few
times more each month, actually).

Apart from Operating Systems,
most web masters are of course
interested in the distribution of
web browsers and their versions.
This can be seen if we click on the
OS button of the DecisionPivot (to
turn this dimension off) and click
on the Browser button instead (to
turn that dimension on). The
effects can be seen in Figure 6.

As we saw last month already,
the version 4.x browsers of both
Netscape and Internet Explorer are
used for well over 75% of the total
page requests of my website that
day (over 90% if you discard the
750 ‘page requests’ made by the
Teleport WebRobot). This is again
good news, since it means we can

unit Unit1;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, Db, DBTables, mxtables, Grids, mxgrid,
mxDB, mxstore, ExtCtrls, mxpivsrc, TeeProcs, TeEngine,
Chart, mxgraph, Series;

type
TForm1 = class(TForm)
DecisionPivot1: TDecisionPivot;
DecisionCube1: TDecisionCube;
DecisionSource1: TDecisionSource;
DecisionGrid1: TDecisionGrid;
DecisionQuery1: TDecisionQuery;
DecisionGraph1: TDecisionGraph;
Series2: TPieSeries;
Series3: TPieSeries;
Series1: TLineSeries;
Series4: TLineSeries;
Series6: TLineSeries;
Series7: TLineSeries;
Series8: TLineSeries;
Series9: TLineSeries;
Series10: TLineSeries;
Series5: TBarSeries;
procedure DecisionGrid1DecisionDrawCell(Sender:
TObject; Col,Row: Integer; var Value: String;
var aFont: TFont; var aColor: TColor;
AState: TGridDrawState; aDrawState:
TDecisionDrawState);

procedure DecisionPivot1Click(Sender: TObject);
end;

var
Form1: TForm1;

implementation
{$R *.DFM}
type
THackDecisionGrid = class(TDecisionGrid)
public
property ColWidths;

end;
procedure TForm1.DecisionGrid1DecisionDrawCell(
Sender: TObject; Col, Row: Integer; var Value: String;
var aFont: TFont; var aColor: TColor;
AState: TGridDrawState; aDrawState: TDecisionDrawState);

begin
if (Col <= 0) and (Row <= 0) then begin
if DecisionGrid1.FixedCols > 1 then
if DecisionGrid1.Cells[-2,-1] = 'OS' then
THackDecisionGrid(DecisionGrid1).ColWidths[1] := 56

else
THackDecisionGrid(DecisionGrid1).ColWidths[1] :=
110;

if DecisionGrid1.FixedCols > 2 then
THackDecisionGrid(DecisionGrid1).ColWidths[2] := 110

end
end;
procedure TForm1.DecisionPivot1Click(Sender: TObject);
begin
DecisionGraph1.Visible := not DecisionGraph1.Visible;

end;
end.

➤ Listing 2

use JDK 1.1 applets on the JBuilder
section, and other HTML advanced
features in the entire website.

Internet Explorer is used for just
a little less than half of the total
page requests. This means it may
not be a good idea to use too many
ActiveX controls or ActiveForms,
since more than half of the pages
are not serviced by a browser
which can, by default, handle
them. Especially since the ActiveX
plugin for Netscape Communicator
4.x is not free, we need to keep an
eye on this figure before starting to
utilise ActiveX solutions more,
even thin ActiveForms
like those you can find
at www.drbob42.com/
ActiveX/.

Note that there are
many Netscape version
4.0x browsers, and it
would be a good thing if
we could summarize
them all under one
‘Netscape 4.x’ entry
instead of identifying all

these sub-versions. We have to go
back to the TrkTable program
again, and modify the conversion
process. This is done by the
{$IFDEF X} compiler directive as
can be seen back in Listing 1.

Advanced Decisions
Apart from showing either Oper-
ating Systems or Browsers (or
both) against Hour, we can also
show Browsers against Operating
Systems, which would not tell
much about my website, but more

➤ Figure 4

➤ Figure 5

32 The Delphi Magazine Issue 40

about the types of browsers and
their relative availability. The
DecisionPivot enables us to ‘open
and close’ dimensions by clicking
on the buttons, but we can also
drag dimensions from one side to
another. Just right click on the
button and move it to the other
axis. Doing so, we can set OS against
Browsers, as can be seen in Figure 7.

The browser ‘Thai’ turned out to
be the Thai version of Internet
Explorer, so I changed the TrkTable
parser to eliminate Thai and add
the numbers to the correct ver-
sions of Internet Explorer instead.

Apart from showing all the
browser types against all the oper-
ating systems, it’s also possible to
‘instantiate’ one or more of the
dimensions to a fixed value. For
example, if we’d like to see the
browser distribution on Windows
98 during the day, we can right
click on the OS button and select
the Win98 value (Figure 8).

Despite Mr Gates’ assurances
that Windows 98 is open and
people can run any browser on this
operating system, it would appear

that in practice over 90% of the
people are using Internet Explorer
4.0 or higher anyway.

Visual Decisions
A final exercise involves using a
DecisionChart instead of a
DecisionGrid, thereby presenting
the data in a more visual manner.
DecisionCharts are derived from
TeeChart (in fact, they are just
TeeCharts obtaining their informa-
tion from the DecisionCube), and
can be used as plain TeeCharts
accordingly. Figure 9 shows the
browser versions among all unique
visitors for that day.

Summary
We have explored TDecisionCubes,
learned how to connect them to
input queries (TDecisionQuery or
TQuery), connect via a
TDecisionPivot to visual compo-
nents like TDecisionGrid and
TDecisionChart. We also learned to
limit the number of dimensions to
avoid memory problems, and we

➤ Figure 8 ➤ Figure 9

➤ Right: Figure 7➤ Below: Figure 6

have seen ways to tweak the analy-
sis views at runtime. All in all, the
Decision Cube component set pro-
vides a powerful way to analyse
your data.

Next Time
After all this multi-tier violence, it’s
time to have a little break by taking
a closer look at implementing
NNTP (Network News Transfer
Protocol) techniques for reading
and writing newsgroup messages.
Stay tuned!

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is a profes-
sional knowledge engineer tech-
nical consultant using Delphi,
JBuilder and C++Builder for
Bolesian (www.bolesian.com)
and freelance technical author.

	Problem Description
	DecisionCube Theory
	Logfile Reconversion
	DecisionCube Practice
	Decision requests and visitors (IP
	Decision Cube
	Decision Grid
	Decision Action!
	Advanced Decisions
	Visual Decisions
	Summary
	Next Time

